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1 Introduction

The overall goal of our AFOSR sponsored research program is to construct fast and

efficient numerical algorithms for solving stochastic partial differential equations and

apply them to solve optimal control problems under uncertainty which is described

by stochastic partial differential equations.

Uncertainty quantification has been an active research area in the past 10 years

with many significant applications ranging from signal processing to aircraft wing

designs. It is well understood that effective numerical methods for stochastic partial

differential equations (SPDES) are essential for uncertainty quantification. In the

last decade much progress has been made in the construction of numerical algorithms

to efficiently solve SPDES with random coefficients and white noise perturbations.

However, high dimensionality and low regularity are still the bottleneck in solving real

world applicable SPDES with efficient numerical methods. This project is intended to

address the mathematical aspects of numerical approximations of SPDES, including

error analysis and complexity analysis and development of new efficient numerical

algorithms. Our contributions toward this objective include

(i). Optimal Kronecker sequence for the quasi Monte Carlo method and the Monte

Carlo method for stochastic Stokes equations. The generation of appropriate high-



quality quasirandom sequences (low-discrepancy sequences) is crucial to the success

of quasi-Monte Carlo methods. We present a new algorithm for finding an optimal

Kronecker sequence within choices of irrationals. we illustrated with numerical ex-

periments why our algorithm is efficient for breaking these correlations.

(ii). Efficient algorithms for stochastic partial differential equations. We are inter-

ested in the the orthogonal polynomial expansion of d-variable functions. Fast and

efficient algorithms of evaluating such expansions are essential for efficiently solving

stochastic partial differential equations with spectral methods where d may be fairly

large.

(iii). High order numerical method for nonlinear filter problems. We first convert

the nonlinear filter problem into a problem of solving a stochastic partial differential

equations (SPDES). We then construct a high order method to solve the SPDES and

apply our algorithm to solve a ship tracking problem.

2 Brief Overview of Accomplishments

During the prior three-year grant period we have published 12 papers that have

been supported by AFOSR funding. Selections of our current accomplishments are

summarized here to provide an introduction to the concepts we have developed in the

past and upon which future planned studies are based.

2.1 The optimal Kronecker Sequence for quasi Monte Carlo

simulations

Kronecker sequences are easy and fast to implement. However, problems with Kro-

necker sequences arise from correlations between the choice of parameters which are

used for different dimensions. These correlations cause Kronecker sequences to have

poor two-dimensional projections for some pairs of dimensions.
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Figure 1: Left: 1000 points of dimension 1 and 2 projection for original Kronecker

sequence; right: 1000 points of dimension 26 and 27 projection for original Kronecker

sequence.

In Figure 1, we can see high correlations and similarities in the poor two-dimensional

projections for original Kronecker sequences.

There are at least two possible ways to break the correlations we have seen in

the Kronecker sequence. One is by increasing the difference between the bases for

any pair of dimensions; the other is to select better basis for the Kronecker sequence.

It became clear that the smaller the partial quatients in the coninued fractions of

the irrarional number, the more uniformly distributed the s-dimenional Kronecker

sequence is [4]. We blend those two methods and propose a novel approach by using

generarlized golden ratio, which is widely applied in many applications in computer

science [6]. The 2-D projections derived from our new algorithm are shown in Figure

2. The patterns appeared in Figure 1 disappear in Figure 2.

We have demonstrated that generalization of golden ratio is the simplest and most

effective method to break this correlation in original Kronecker sequences. It is also

very easy to implement the original Kronecker sequences and generate high-quality

of the optimal Kronecker sequences.

In Bratley et al’s paper [1], the Faure and Sobol sequences are used to evaluate high

dimensional integrals, and the errors in the numerical results for over 30 dimensions

become quite large. When we compared their results with our optimal Kronecker

sequences, we found that our method has much smaller errors comparing to the
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Figure 2: Left: 1000 points of dimension 1 and 2 projection for optimal Kronecker

sequence; right: 1000 points of dimension 26 and 27 projection for optimal Kronecker

sequence.

benchmark Faure and Sobol methods.

2.2 High order numerical method for nonlinear filter prob-

lems

Assume that X = Xt is a signal process and Y = Yt is the observation. Because of

noises, X and Y are solutions of the following stochastic differential equations.

 dXt = b(Xt)dt+ σ(Xt)dUt

dYt = h(Xt)dt+ dVt

Here Ut, Vt are independent Brownian motions which reflect the noises of the signal

and the observation. The filter problem is to seek the best estimation of φ(X) given

the observation Y . Mathematically this amounts to seek a conditional expectation

E (φ(Xt) | (Ys, 0 ≤ s ≤ t)), i.e.,

E (φ(Xt) | (Ys, 0 ≤ s ≤ t)) = Argmin
(
E |φ(Xt)− Zt|2

)
{Zt is Y(0,t) measurable}

According to Zaikai filter theory, the best approximation is given by

E (φ(Xt) | (Ys, 0 ≤ s ≤ t)) =

∫
φ(x)p(t, x)dx∫
p(t, x)dx

.
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Figure 4: Un-normalized probability distribution of the ship location

Also according to the Zakai’s theory, p satisfies the following stochastic partial differ-

ential equation.

dpt = (
d∑

i,j=1

σσ∗
∂2pt
∂xi∂xj

+

p∑
i=1

bi
∂pt
∂xi

)dt+ pth
∗dYt.

So the nonlinear filter problem is solved as long as the above stochastic partial dif-

ferential equation is be solved. We have derived a higher order method to solve

the nonlinear stochastic differential equations. We achieve the high order method

through solving a backward forward doubly stochastic differential equations. Detail

of the method can be found in [3].

We then applied the method to solve a problem of tracking a ship in open water

through the angle observation of the ship. Figure 3 shows a sample path of the ship

and Figure 4 shows the probably distributions of the ship location at four different

times.



2.3 Error analysis of finite element approximations for stochas-

tic Stokes equations

In this subproject, we consider the steady-state Stokes equation with the forcing term

perturbed by white noise:
−ν∆u(x, ξ) +∇p(x, ξ) = f + σ(x)Ẇ (x, ξ) x ∈ D ⊂ Rd(d = 2, 3), ξ ∈ Ω,

divu = 0 in D,

u = 0, on ∂D.

(1)

Here (Ω,F , P ) is a probability space and Ẇ = (Ẇ 1, . . . , Ẇ d) is the white noise such

that

E(Ẇ j(x)Ẇ j(x′)) = δ(x− x′), x, x′ ∈ Ω, j = 1, . . . , d.

Our strategy of solving this problem consists of two steps. In the first step, we

construct an approximate white noise Ẇh based the finite element partition of the

physical domain D. In the second step, we construct a finite element approximation

(uh, ph) for the solution (u, p) of (1). Under certain assumptions on the regularity of

the domain and using the Taylor-Hood finite element, we proved the following error

estimates [2].  E
(
‖u− uh‖2 + ‖p− ph‖2−1

)
≤ C| lnh|h2 d = 2,

E
(
‖u− uh‖2 + ‖p− ph‖2−1

)
≤ Ch d = 3.

(2)

The significance of the error estimate is twofold:

• It indicates that the due to the lack of regularity, the convergence order of the

finite element solution for stochastic Stokes equations is much lower than that

for deterministic Stokes equations.

• It provides a guidance for the number of samples used in Monte Carlo simula-

tions to evaluate the statistics of the solutions.

We also constructed practical numerical algorithms to find the finite element approx-

imations using the Monte Carlo method and verified our theoretical results through



numerical experiments ([2]).

2.4 Fast and efficient numerical algorithms for stochastic par-

tial differential equations

We first developed a fast algorithm of high dimension orthogonal polynomial ex-

pansions on sparse grids. Then we apply this algorithm to solve stochastic partial

differential equations (SPDEs). This is achieved through the following four steps.

• Step 1. Use only sparse indices in the orthogonal expansions. For a d dimen-

sional problem, this reduces the number of terms in the orthogonal expansion

from O(nd) to O(n logd−1 n), a tremendous saving of computing cost.

• Step 2. Use fast Fourier transform as well as sparse grid to compute the coeffi-

cients of the orthogonal expansion. This reduces the computing cost from O(nd)

to O(n log(d+1)n), yet another significant reduction of computing complexity.

• Step 3. Apply the fast orthogonal expansion algorithm to solve stochastic

partial differential equations with random coefficients and forcing term using the

spectral method. The remarkable feature of our algorithm is that the coefficient

matrix is sparse and each element can be calculated analytically.

Our numerical experiments show that the overall computing complexity of solving

the stochastic partial differential equation is in the same magnitude as computing

the orthogonal expansion of the forcing term, which is proved to be O(n logd+1 n).

In comparison, the complexity of conventional spectral method is at least O(nd),

which is prohibitively expensive when the dimensional d is large as in the case of

solving stochastic partial differential equations. The numerical verification of the

computational complexity is shown in Figure 2.4.
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